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Abstract

In this paper, we investigate the problem of existence and nonexistence
of positive solutions for the nonlinear boundary value problem:

u(n)(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

satisfying three kinds of different boundary value conditions. Our analysis
relies on Krasnoselskii’s fixed point theorem of cone. An example is also
given to illustrate the main results.

1. Introduction

There is currently a great deal of interest in positive solutions for several
types of boundary value problems. A large part of the literature on positive
solutions to boundary value problems seems to be traced back to Krasnosel-
skii’s work on nonlinear operator equations [6], especially the part dealing
with the theory of cones in Banach spaces. In 1994, Erbe and Wang [3]
applied Krasnoselskii’s work to eigenvalue problems to establish intervals of
the parameter λ for which there is at least one positive solution. In 1995,
Eloe and Henderson [1] obtained the solutions that are positive to a cone for
the boundary value problem

u(n)(t) + a(t)f(u) = 0, 0 < t < 1,

u(i)(0) = u(n−2)(1), 0 ≤ i ≤ n − 2.

1AMS subject classification. 34 B15, 34 B18.
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Since this pioneering works, a lot research has been done in this area [2, 3,
5, 7, 8, 9]. The purpose of this paper is to establish the existence of positive
solutions to nonlinear nth order boundary value problems:

u(n)(t) + λ a(t)f(u(t)) = 0, 0 < t < 1, (1)

u(0) = u′′(0) = u′′′(0) = ........ = u(n−1) = 0, u′(1) = 0, (2)

u(0) = u′(0) = u′′(0) = ........ = u(n−2) = 0, u′(1) = 0, (3)

u(0) = u′(0) = u′′(0) = ........ = u(n−2) = 0, u′′(1) = 0, (4)

where λ is a positive parameter. Throughout the paper, we assume that

C1: f : [0,∞) → [0,∞) is continuous

C2: a : (0, 1) → [0,∞) is continuous function such that
∫ 1

0
a(t) dt > 0.

2. Preliminaries

For the convenience of the reader, we present here some notations and
lemmas that will be used in the proof our main results.

Definition 1. Let E be a real Banach space. A nonempty closed convex set
K ⊂ E is called cone of E if it satisfies the following conditions:

1. x ∈ K, σ ≥ 0 implies σx ∈ K;

2. x ∈ K, −x ∈ K implies x = 0.

Definition 2. An operator is called completely continuous if it is con-
tinuous and maps bounded sets into precompact sets.

Lemma 1. Let E be a Banach space and K ⊂ E is a cone in E. Assume
that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T :
K ∩ (Ω2 \Ω1) −→ K be completely continuous operator. In addition suppose
either:

H1 : ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2 or

H2 : ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1.

holds. Then T has a fixed pint in K ∩ (Ω2 \ Ω1).

3. Green functions and their properties
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Lemma 2. Let y ∈ C[0, 1], then the boundary value problem

u
(n)
2 (t) + y(t) = 0, 0 < t < 1, (5)

u2(0) = u′′
2(0) = u′′′

2 (0) = ...........u
(n−1)
2 (0) = 0, u′

2(1) = 0, (6)

has a unique solution

u2(t) =

∫ 1

0

G2(t, s)y(s)ds,

where

G2(t, s) =

{

t(1−s)n−2

(n−2)!
− (t−s)n−1

(n−1)!
if 0 ≤ s ≤ t ≤ 1;

t(1−s)n−2

(n−2)!
if 0 ≤ t ≤ s ≤ 1.

Proof. Applying the Laplace transform to Eq(5) we get

snu2(s) − sn−2u′
2(0) = −y(s), (7)

where u2(s)and y(s) is the Laplace transform of u2(t) and y(t) respectively.
The Laplace inversion of Eq (7) gives the final solution as:

u2(t) =

∫ 1

0

t(1 − s)n−2

(n − 2)!
y(s)ds−

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds. (8)

The proof is complete.

It is obvious that
G2(t, s) ≥ 0 and G2(1, s) ≥ G2(t, s), 0 ≤ t, s ≤ 1. (9)

Lemma 3. G2(t, s) ≥ q2(t)G2(1, s) for 0 ≤ t, s ≤ 1, where q2(t) = (n−2)t
n−1

.

Proof. If t ≥ s, then

G(t, s)

G(1, s)
=

(n − 1)t(1 − s)n−2 − (t − s)n−1

(n − 1)(1 − s)n−2 − (1 − s)n−1

=
(n − 1)t(1 − s)n−2 − (t − s)(t − s)n−2

(1 − s)n−2(n − 2 + s)
≥

(n − 1)t

n − 1
.

If t ≤ s, then G2(t,s)
G2(1,s)

= t ≥ (n−1)t
n−1

. The proof is complete.
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Lemma 4. Let y ∈ C[0, 1], then the boundary value problem

u
(n)
3 (t) + y(t) = 0, 0 < t < 1, (10)

u3(0) = u′
3(0) = u′′

3(0) = ...... = un−2
3 (0) = 0, u′

3(1) = 0, (11)

has a unique solution

u3(t) =

∫ 1

0

G3(t, s)y(s)ds,

where

G3(t, s) =

{

tn−1(1−s)n−2

(n−1)!
− (t−s)n−1

(n−1)!
if 0 ≤ s ≤ t ≤ 1;

tn−1(1−s)n−2

(n−1)!
if 0 ≤ t ≤ s ≤ 1.

Proof. Applying the Laplace transform to Eq(10) we get

snu2(s) − un−1
2 (0) = −y(s), (12)

where u3(s) is the Laplace transform of u3(t). The Laplace inversion of Eq
(12) gives the final solution as:

u3(t) =

∫ 1

0

tn−1(1 − s)n−2

(n − 1)!
y(s)ds −

∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds. (13)

The proof is complete.

It is obvious that
G3(t, s) ≥ 0 and G3(1, s) ≥ G3(t, s), 0 ≤ t, s ≤ 1. (14)

Lemma 5. G3(t, s) ≥ q3(t)G3(1, s) for 0 ≤ t, s ≤ 1, where q3(t) = tn−1.

Proof. If t ≥ s, then

G3(t, s)

G3(1, s)
=

tn−1(1 − s)n−2 − (t − s)n−1

(1 − s)n−2 − (1 − s)n−1

=
t(t − ts)n−2 − (t − s)(t − s)n−2

s(1 − s)n−2
≥ tn−2 ≥ tn−1.

If t ≤ s, then G3(t,s)
G3(1,s)

= tn−1. The proof is complete.
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Lemma 6. Let y ∈ C[0, 1], then the boundary value problem

u
(n)
4 (t) + y(t) = 0, 0 < t < 1, (15)

u4(0) = u′
4(0) = u′′

4(0) = ........ = un−2
4 (0) = 0, u′′

4(1) = 0, (16)

has a unique solution

u4(t) =

∫ 1

0

G4(t, s)y(s)ds,

where

G4(t, s) =

{

tn−1(1−s)n−3

(n−1)!
− (t−s)n−1

(n−1)!
if 0 ≤ s ≤ t ≤ 1;

tn−1(1−s)n−3

(n−1)!
if 0 ≤ t ≤ s ≤ 1..

The proof of Lemma 6 is very similar to that of Lemma 4 and therefore
omitted. It is obvious that

G4(t, s) ≥ 0 and G4(1, s) ≥ G4(t, s), 0 ≤ t, s ≤ 1. (17)

Lemma 7. G4(t, s) ≥ q4(t)G4(1, s) for 0 ≤ t, s ≤ 1, where q4(t) = tn−1

2
.

Proof. If t ≥ s, then

G4(t, s)

G4(1, s)
=

tn−1(1 − s)n−3 − (t − s)n−1

(1 − s)n−3 − (1 − s)n−1

≥
t2(t − ts)n−3 − (t − s)2(t − ts)n−3

(1 − s)n−3(2s − s2)
≥

tn−1

2
.

If t ≤ s, then G4(t,s)
G4(1,s)

= tn−1 ≥ tn−1

2
. The proof is complete.

3. Main results

In this section, we will apply Krasnoselskii’s fixed point theorem to the
eigenvalue problem (1), (i) (i=2,3,4). We note that ui(t) is a solution of
(1),(i) if and only if

ui(t) = λ

∫ 1

0

Gi(t, s) a(s)f(ui(s)) ds, 0 ≤ t ≤ 1.

For our constructions, we shall consider the Banach space X = C[0, 1]
equipped with standard norm ‖ui‖ = max0≤t≤1 |ui(t)|, ui ∈ X. We define
a cone P by

P = {ui ∈ X : ui(t) ≥ q(t) ‖ui‖, t ∈ [0, 1]} ,
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It is easy to see that if ui ∈ P , then ‖ui‖ = ui(1) . Define an integral
operator by:

Tui(t) = λ

∫ 1

0

Gi(t, s) a(s)f(ui(s)) ds, 0 ≤ t ≤ 1, ui ∈ P. (18)

Lemma 8. T (P ) ⊂ P .

Proof. Notice from (9), (12) and (15) that, for ui ∈ P , Tui(t) ≥ 0 on [0, 1]
and

Tui(t) = λ

∫ 1

0

Gi(t, s)a(s)f(ui(s)) ds

≥ λqi(t)

∫ 1

0

Gi(1, s)a(s)f(ui(s)) ds

≥ λqi(t) max
0≤t≤1

∫ 1

0

Gi(t, s) a(s)f(ui(s)) ds

= q(t)‖Tui(t)‖, for all t, s ∈ [0, 1].

Thus, T (P ) ⊂ P .

By standard argument, it is easy to see that T : P −→ P is a completely
continuous operator. Following Sun and Wen [8] , we define some important
constants:

A =

∫ 1

0

Gi(1, s) a(s)qi(s) ds, B =

∫ 1

0

Gi(1, s) a(s) ds,

F0 = lim
ui→0+

sup
f(ui)

ui

, f0 = lim
ui→0+

inf
f(ui)

ui

,

F∞ = lim
ui→+∞

sup
f(ui)

ui

, f∞ = lim
ui→+∞

inf
f(ui)

ui

.

Here we assume that 1
Af∞

= 0 if f∞ → ∞ and 1
BF0

= ∞ if F0 → 0 and
1

Af0
= 0 if f0 → ∞ and 1

BF∞

= ∞ if F∞ → 0.

Theorem 1. Suppose that Af∞ > BF0, then for each λ ∈
(

1
Af∞

, 1
BF0

)

, the

problem (1) , (i)(i=2,3,4) has at least one positive solution.
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Proof. We choose ε > 0 sufficiently small such that (F0 + ε)λ B ≤ 1. By
definition of F0, we can see that there exists an l1 > 0, such that f(ui) ≤
(F0 + ε)ui for 0 < ui ≤ l1. If ui ∈ P with ‖ui‖ = l1, we have

‖Tui(t)‖ = Tui(1) = λ

∫ 1

0

Gi(1, s) a(s)f(ui(s)) ds

≤ λ

∫ 1

0

Gi(1, s)a(s)(F0 + ε)ui(s) ds

≤ λ (F0 + ε)‖ui‖

∫ 1

0

Gi(1, s)a(s) ds

≤ λB (F0 + ε)‖ui‖ ≤ ‖ui‖.

Then we have ‖Tui‖ ≤ ‖ui‖. Thus if we let Ω1 = {ui ∈ X : ‖ui‖ < l1},
then ‖Tui‖ ≤ ‖ui‖ for ui ∈ P ∩ ∂Ω1. Following Yang [9], we choose δ > 0
and c ∈ (0, 1

4
), such that

λ

(

(f∞ − δ)

∫ 1

c

Gi(1, s)a(s)q(s) ds

)

≥ 1.

There exists l3 > 0, such that f(ui) ≥ (f∞ − δ) ui for ui > l3. Let l2 =
max{ 1

qi(c)
, 2l1}. If ui ∈ P with ‖ui‖ = l2, then we have

ui(t) ≥ qi(t)l2 ≥ qi(c)l2 ≥ l3.

Therefore, for each ui ∈ P with ‖ui‖ = l2,we have

‖Tui(t)‖ = (Tui)(1) = λ

∫ 1

0

Gi(1, s) a(s)f(ui(s)) ds

≥ λ

∫ 1

c

Gi(1, s)a(s)(f∞ − ε)ui(s) ds

≥ λ (f∞ − ε)‖ui‖

∫ 1

c

Gi(1, s)a(s) qi(s) ds ≥ ‖ui‖.

Thus if we let Ω2 = {ui ∈ E : ‖ui‖ < l2}, then Ω1 ⊂ Ω2 and ‖Tui‖ ≥ ‖ui‖
for ui ∈ P ∩ ∂Ω2. Condition ( H1) of Krasnoselskii’s fixed point theorem
is satisfied. So there exists a fixed point of T in P . This completes the
proof.

Theorem 2. Suppose that A f0 > B F∞, then for each λ ∈
(

1
Af0

, 1
BF∞

)

the

problem (1), (i) (i = 2, 3, 4) has at least one positive solution.
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The proof of Theorem 2 is very similar to that of Theorem 1 and therefore
omitted.

Theorem 3. Suppose that λBf(ui) < ui for ui ∈ (0,∞). Then the problem
(1), (i)(i=2,3,4) has no positive solution.

Proof. Following Sun and Wen [8], assume to the contrary that ui is a positive
solution of (1),(i). Then

ui(1) = λ

∫ 1

0

Gi(1, s) a(s)f(ui(s)) ds <
1

B

∫ 1

0

Gi(1, s)a(s)ui(s) ds

≤
1

B
ui(1)

∫ 1

0

Gi(1, s)a(s) ds = ui(1).

This is a contradiction and completes the proof.

Theorem 4. Suppose that λAf(ui) > ui for ui ∈ (0,∞). Then the problem
(1), (i)(i=2,3,4) has no positive solution.

The proof of Theorem 4 is very similar to that of Theorem 3 and therefore
omitted.

Example 1. Consider the equation

u5
1(t) + λ(5t + 2)

7u2
1 + u1

u1 + 1
(8 + sin u1) = 0, 0 ≤ t ≤ 1, (19)

u1(0) = u′′
1(0) = u′′′

1 (0) = u′′′′
1 (0) = 0, u′

1(1) = 0, (20)

Then F0 = f0 = 5, F∞ = 45, f∞ = 27 and 5u1 < f(u1) < 45u1. By direct
calculations, we obtain that A = 0.0193452 and B = 0.101389. From theorem
1 we see that if λ ∈ (1.05495, 1.23288), then the problem (19)-(20) has a
positive solution. From theorem 3 we have that if λ < 0.156556, then the
problem (19)-(20) has a positive solution. By theorem 4 we have that if
λ > 6.46154, then the problem (19)-(20) has a positive solution.
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